1.

(b)	A ca	ble consists of 14 strands of copper wire, each of diameter 1.3 mm.	
	Stranewire	d of copper	
	(i) 	Show that the cross-sectional area of one strand of the coppapproximately 1.3×10^{-6} m ² .	per wire is
	(ii)	Hence calculate the resistance of one strand of length 20.0m. [Resistivity of copper = $1.7 \times 10^{-8} \Omega$ m].	[1]
	(iii)	Determine the combined resistance of the 14 strand cable.	[2]

(iv) Ene		ssipated in one second in a single strand carrying a current of 3.0 A	[3]
***************************************		ssipated in one second in the whole cable carrying a current of 3.0A	
*******	************		
*******	**********		
(v)	Give	e an advantage of the 14 strand copper cable over	
	(I)	a single strand copper cable of 1.3 mm diameter,	[1]
	(II)	a solid core cable of the same total cross-sectional area.	[1]

(IV)		wing your working clearly, calculate the ratio:	F23
		ssipated in one second in a single strand carrying a current of 3.0A ssipated in one second in the whole cable carrying a current of 3.0A	[3]
1.71101	gy uic	sipated in one second in the whole cable carrying a current of 5.071	
*********			***************************************

(v)	Give	e an advantage of the 14 strand copper cable over	
	(I)	a single strand copper cable of 1.3mm diameter,	[1]
	3.2		
	(II)	a solid core cable of the same total cross-sectional area.	[1]

2.

(a)

(i)	The current in a wire depends on its resistance . Explain, in terms of free electron how this resistance arises when a potential difference is applied across the wire	ons, e. [2]

(ii) The wire (labelled P in the diagram) is connected to a fixed voltage source and a resistor to limit the current as shown. The wire is 0.4 m long and has a cross-sectional area of $2.0\times10^{-6}\,\mathrm{m}^2$. When the current is 1.6 A it dissipates 1.8 J of energy in 1 minute. Calculate its resistivity.

(b) (i) The current, I, in a wire of cross-sectional area, A, is given by the formula:

$$I = nAve$$

Derive the formula. You may include a clearly labelled diagram.

[4]

(ii)	Calculate the drift velocity of through it is 1.6 A. [n = 6.4 >	of the free electr < 10 ²⁸ m ⁻³]	ons in the wir	e in <i>(a)</i> (ii) whe	n the curren [2]
		***************************************	***************************************	***************************************	

(iii) Wire P is now connected to another wire, Q, of the same material but with twice the cross-sectional area. The wires are connected to the same fixed voltage source and resistor.

Complete the following sentences by circling the correct option given in brackets.

- (I) The current in the circuit containing both wires is [less than 1.6A] [equal to 1.6A] [more than 1.6A]. [1]
- (II) The current in P is [less than] [the same as] [greater than] the current in Q. [1]
- (III) The electron drift velocity in Q is **[half] [the same as] [twice] [four times]** the electron drift velocity in P. [1]

(i)	State Ohm's law.	
(ii)	What can be said about the resistance of a conductor that obeys Ohm's law?	
in pa	heating circuit of a hairdryer consists of two heating elements R_1 and R_2 connernallel as shown. The elements are made from wire of the same material of resisting $10^{-8}\Omega m$ and diameter $1.4\times 10^{-4}m$.	ct
	230 V	
	R_1	
	R_2	
(i)	The length of wire used to make R_1 is 3.2m. Show that the resistance of F	₹.
(1)	approximately 200 Ω .	
		•••
(ii)	Calculate the power output from the heating circuit with only \mathbf{R}_1 switched on	
(iii)	With both elements switched on the total resistance is only a third of the resistance of R_1 on its own. Calculate the resistance of R_2 .	aı
	2	
********		•••
Ex hea	plain which element, R_1 or R_2 , would provide the greater power output from the ting circuit.	2
••••		

3.

[3]

[1]

4.

5. (a) (i) Draw a labelled diagram of the apparatus you would use to determine the relationship between the resistance and length of a metal wire.

(ii) Sketch a graph of your expected results.

Resistance 4

	(iii)	Explain how you would use an accurately drawn graph of resistance against length as well as any other measurements, to obtain a value for the <i>resistivity</i> of the meta in the wire.

(b)	(i)	A simple heater is made of a metallic wire of resistivity $48 \times 10^{-8} \Omega m$ and cross sectional area $4.0 \times 10^{-8} m^2$. When it is in use the potential difference across the heater is 12.0V and its power is 32W. Calculate the length of the wire in the heater.
	(ii)	Calculate the drift velocity of the electrons in the wire when the heater is in use [The number of free electrons per unit volume is $3.4\times10^{26}\text{m}^{-3}$ for the material in the wire.]

(a)	(i)	Show that the cross-sectional area of the cable is $4.0 \times 10^{-4} \mathrm{m}^2$.
	(ii)	Calculate the current in the cable given that the pd across it is $2.0\mathrm{kV}$.
	(iii)	Calculate the mean drift velocity of the free electrons in the cable given t there are 6.0×10^{28} atoms per m ³ of aluminium and each atom contributes 3 f electrons.
(b)	A sn	nall portion of the cable is damaged. As a result its cross-sectional area is less the of the cable, as shown in the diagram.
C)	
	(i)	State how the current in the thinner portion compares with the current in the of the cable.
C	(i) (ii)	